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Abstract In this paper, we investigate the deterministic and stochastic behaviour of the prey-predator model with cooperation and
the mate-finding Allee effect. The stochasticity in the prey-predator model arises due to environmental or genetic fluctuations. The
deterministic model is reduced to a stochastic model through the introduction of environmental fluctuations in model parameters.
We discussed the dynamical behaviour of deterministic prey-predator models such as positivity, boundedness, different types
of equilibrium and their local stability with different bifurcations. By allowing both prey and predator species to be affected by
stochastic perturbations, we modify the proposed model to its stochastic counterpart. We investigate the uniqueness of positive global
solutions, the existence of stationary distributions, etc., of stochastic model solutions. The simulation results for the stochastic system
demonstrate that fluctuations in the ecosystem due to stochastic perturbations are highly sensitive to environmental noise intensities.
With the increase in environmental fluctuation, there is a shift in regime i.e., noise-induced transition from the attractor to predator
extinction. Stochastic confidence ellipses are used to analyze the effect of noise-induced transitions.

1 Introduction

Interplay among different populations plays an important role in ecology. It deals with the variation of population size and density
for one or more species depending on several factors [1, 2]. Several models were developed by the mathematician and ecologist,
describing the dynamical behavior of spatial-temporal density of the species [3]. In ecosystem the modeling population dynamics is
too challenging due to the existence of a large number of species and different interactions. Prey-predator interaction is one of the
most common interactions in ecology, as described by [1]. In ecosystems, interactions between species occur in different ways. To
know more about the evolution of ecological systems and the interaction between species, we have to concentrate on the study of
population dynamics.

There are a lot of discoveries in mathematical modeling after the work of Lotka [2] and Volterra [4]. In the ecological system, the
most significant factor is a functional response, which defines the predator’s consumption pattern. Basically the functional response
can be separated by two classes one of them is prey dependent [5, 6] and another is both prey and predator dependent [7, 8]. In
the classical Lokta-Volterra model [2, 4], the Holling type I functional response (linear) is employed, represented by f (N ) � λN ,
where λ(> 0) is the proportionality constant, and N(t) is the density of the species population. However, the Holling type I functional
response is unbounded, making it unsuitable for all biological models of ecological systems. To address this limitation, Holling
introduced another functional response known as Holling type II, defined as f (N ) � λN

1+hλN , where h(> 0) is the half saturation
constant. The Holling type II functional response is bounded and proves to be more applicable in many ecological systems compared
to Holling type I, as it avoids unbounded growth. Several researchers [9, 10] used Holling II functional response in their model. We
know that the functional response are either prey dependent or predator dependent sometimes both prey and predator dependent.
But sometimes due to the fact it can be derived from other criteria. In [11], the author shows that the intermediate predator’s density
is used in principle predator and the intermediate predator dominates the density of prey population.

Cooperation is a fundamental process where a group of species involved for their mutual benefit and it plays an important role in
ecology. The experimental results show that in nature the predators hunt their prey together as a group [12]. Hunting in a group take
more advantages like increase the success rate, decrease the distance of chasing [13], the chances of catching more prey increase
[14]. The cooperative behaviour observe for some predators for hunting upon their prey and they also create fear. For example,
wolves cooperate for hunting their prey and also attack indirectly [15]. In [16], the author has shown that in the presence of hunting
cooperation the system exhibits stable coexistence equilibrium, and the model exhibit complex dynamics. They also noticed that
hunting cooperation creates a positive relationship between population density and per capita growth rate. In [17], the author discuss

a e-mail: bapinmondal1@gmail.com (corresponding author)

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjp/s13360-024-05282-0&domain=pdf
http://orcid.org/0000-0001-7385-5278
mailto:bapinmondal1@gmail.com


  488 Page 2 of 23 Eur. Phys. J. Plus         (2024) 139:488 

about hunting cooperation in discrete predator-prey system and shown that the chaotic regime shift with the help of period doubling
bifurcation. Due to increase of hunting cooperation the system goes to stable from chaotic dynamics. There is very little research
work about hunting cooperation [18–20]. The author in [20] shown that hunting cooperation generate fear in prey and the system goes
to extinction. In similar manner the author in [21] discussed about modified Leslie-Gower model with fear in prey and cooperation
in predator and shown that the fear effect is more applicable for stabling the system than hunting cooperation. In [19], the author
has shown that the hunting cooperation in a diffusive system positively acts as the coexistence of both populations.

In nature, most of the species experiences cooperative behaviour for feeding, mating condition, environmental restriction and
cooperative defense [22] and the density of the population depend on this parameters. Also there is another factor which changes the
density of the population and this is known as Allee effect [23]. For a more realistic upgrade, the Allee effect can be implemented to
introduce a non-monotonous per capita growth rate for the interacting species. American ecologist professor W.C. Allee [24] first
introduced the concept of the Allee effect. The Allee effect measures population decrement in per capita growth rate at low population
density i.e., the individual fitness is directly proportional to the density of the population. Allee effect acts inbreeding depression,
annulment or defense predator for environmental condition, mate finding problem etc [23, 25]. Allee effects can be categorized into
two types: strong and weak. Strong Allee effects are characterized by negative population growth rates at low densities, whereas
weak Allee effects exhibit lower but not negative population growth rates at low densities. Several studies have shown that the
dynamics of the prey-predator model hugely change due to Allee effect [26–28]. In a prey-predator system, the predator population
may experience behaviors similar to the mate-finding Allee effect due to various factors. Firstly, when prey populations decrease,
predators may struggle to find enough food for energy, affecting their ability to find mates and reproduce. Secondly, a drop in prey
density reduces the chances for predators to come across potential mates, especially in species where choosing a mate is crucial
for successful reproduction. Several mechanisms contribute to the Allee effect in predators, including the lack of mating partners,
limited sperm supplies, and low fertilization efficiency [29, 30]. These factors collectively shape the mate-finding Allee effect in
predator populations, influencing the dynamics of the entire ecosystem.

The stochasticity is a natural fact in ecosystem. It may create extinction for the population although the deterministic nature is
persist for a long time [31]. The discussion of different noise induced phenomena in the organism make a great deal in the ecosystem.
There are two types of stochasticity namely environmental and demographic stochasticity. Environmental stochasticity corresponds
to environmental fluctuation for instant and it changes the growth rate of the population [32] and demographic stochasticity deals with
individual inconsistency. In demographic case it has a large impact on small species whereas environmental stochasticity generate
extinction for the small and large individuals. There are several research papers [33–35] have been discovered on environmental
stochasticity where the effect of coexistence, extinction, harvesting scenario observed due to white noise. In the deterministic
setup we see that the model parameters are assume to be constant and in general the parameters are effected by environmental
fluctuation. Using the white noise the system changes drastically from its deterministic nature. In [18] the author shown that due to
high fluctuation the stochastic system goes to extinction. So it is clear that there are many studies [36–38], where the solution with
deterministic forms that don’t correlate with environmental fluctuations, which are important components of ecosystems. There are
some difficulties in mathematical modeling for the deterministic sense. In general, difficulty arises for perfect data fit and future
dynamics of the system correctly [39]. In [6] the author shows that the birth rate, competition coefficient, carrying capacity, and
other parameters are affected by environmental fluctuation.

In this paper, we proposed a two-dimensional prey-predator model with environmental fluctuation in the growth rate of prey and
death rate of predator population, considering the effects of mate-finding Allee in predator growth and hunting cooperation. Here,
we use the SSF technique to draw a confidence ellipse in the interior of a stable equilibrium point. Also using the technique we
discuss the regime shift from one stable zone to other.

The nobility of this paper are highlighted below:

• The proposed work introduces a two-dimensional prey-predator model with environmental fluctuations, integrating mate-finding
Allee effect into predator growth and hunting cooperation.

• We identify four interior equilibrium points of our system through numerical analysis.
• The SSF technique is employed to draw a confidence ellipse within the interior of a stable equilibrium point.
• We observed a regime shift occurring with the increase in environmental fluctuation.
• We also observed that high environmental fluctuation leads to predator extinction.

This paper is organized as follows: In section 2, we formulate the model. In Section 3, we examine positivity and boundedness of the
solution, different types of equilibria and their stability with a geometric approach and prove different types of bifurcations (Saddle-
Node, Hopf) for deterministic model. In Section 4, we discuss the numerical simulation for deterministic model. In Section 5, we
discuss the stochastic form of the proposed model. Here, we show the uniqueness and existence of global positive solution, stationary
distribution, persistence and extinction of the stochastic model solution. In the next section, a stochastic model is numerically
simulated. We present some important results in the last section.
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Fig. 1 Schematic diagram of our system

Table 1 Details of parameters
with dimension

Parameters Description Dimension

r Growth rate of prey T−1

k Carrying capacity Biomass
λ Attack rate of predator Biomass−1T−1

a Cooperation coefficient Biomass−2T−1

h Predator handling time T
ε Conversion coefficient 1
δ Allee effect constant Biomass

m Death rate of predator T−1

m1 Death rate of predator due to inter species competition Biomass−1T−1

2 Model formulation

To formulate the model, we consider a one-prey and one predator population. Let N(t) and P(t) be the population density of prey and
predator at any time t, respectively with the birth rate of prey being r and carrying capacity k. The model is formulated considering
the following assumptions:

(1) This model integrates the inherent environmental capacity to support the prey population, while also considering its reproductive
potential. The prey population’s growth is influenced by its intrinsic growth rate and the carrying capacity of its habitat.

(2) Predator populations exhibit a cooperative hunting strategy.

(3) Functional response is consider as Holling type II, due to cooperation its functional format is considered as
(λ + aP)N P

1 + h(λ + aP)N
,

where the parameters are given in Table 1.
(4) Predator population follows the mate finding Allee effect.
(5) Predator populations engage in intra-specific competition.
(6) Environmental fluctuations impact the birth rate of the prey population and the death rate of the predator population.

Incorporating the first five assumptions, the dynamics of any predator-prey model can be expressed in terms of ordinary differential
equations which are as follows:

dN

dt
� r N

(
1 − N

k

)
− (λ + aP)N P

1 + h(λ + aP)N
≡ f (N , P),

dP

dt
� ε(λ + aP)N P

1 + h(λ + aP)N

P

δ + P
− mP − m1P

2 ≡ g(N , P), (1)

with the initial conditions N (0) > 0, P(0) ≥ 0 and the details of parameters are shown in Table 1. We have provided a schematic
diagram depicting the dynamic interactions between prey and predators in Fig. 1. Based on our knowledge, the first five assumptions
for the continuous model have not been considered, and not study the stochasticity has been studied using the SSF technique.

Stochastic predator-prey models offer a broader understanding of ecological community dynamics, especially amid unpredictable
environmental fluctuations. Environmental elements like climate variations, earthquakes, and socio-political disruptions such as wars
and food shortages significantly influence the birth and mortality rates within ecological systems. These influential factors are often
regulated randomly, reflecting the inherent unpredictability of natural systems. By incorporating these factors, researchers can explore
the effects of uncertainty and randomness on population dynamics and community interactions, thus improving the precision of
predictions and our grasp of ecosystem resilience [32, 40]. Ultimately, integrating environmental noise into predator-prey models
represents a crucial step toward enhancing their realism and predictive capacity, aligning more closely with the variability and
uncertainties observed in real-world ecological systems [18, 41].
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To include the environmental fluctuations in the system replace the intrinsic birth term rN(t) by r N (t) + σ1N (t)dB1(t) and the
death term mP(t) by mP(t) + σ2P(t)dB2(t) in the deterministic model (1) then it reduces to:

dN (t) �
[
r N (t)

(
1 − N (t)

k

)
− (λ + aP(t))N (t)P(t)

1 + h(λ + aP(t))N (t)

]
dt + σ1N (t)dB1(t),

dP(t) �
[

ε(λ + aP(t))N (t)P(t)

1 + h(λ + aP(t))N (t)

P(t)

δ + P(t)
− mP(t) − m1P(t)2

]
dt + σ2P(t)dB2(t), (2)

subject to the same initial condition, where B1(t) and B2(t) are independent white noise. Several methods can be used to discuss
population dynamics for nonlinear deterministic models, such as the Lyapunov method, Jacobian matrix method, Coincidence degree
theory, etc. But some research works are available for the nonlinear stochastic system [42–45] considering the Ito integral formula.
In this paper, we consider the application of the Ito integral formula to discuss the long-term behaviour of the population and use
stochastic sensitivity analysis to identify the existence of regime shift.

3 Mathematical analysis of deterministic model

In this section, we shall investigate the different complex dynamics of the deterministic model (1). In the next subsections, we shall
establish the positivity as well as boundedness of the solution, find different types of equilibria and their local stability, and study
different bifurcation analyses for the deterministic model.

3.1 Positivity and boundedness of the solution

Positivity implies that the populations of both prey and predators cannot be negative. In a realistic ecological scenario, it’s not possible
for the number of prey or predators to be less than zero. Therefore, the populations must always remain positive or non-negative. It
is clear that the initial population is always non-negative i.e., N (0) > 0, P(0) ≥ 0. Integrating both sides of the system (1) and we
get,

N (t) � N (0) exp

(∫ t

0

[
r

(
1 − N (t)

k

)
− (λ + aP(t))P(t)

1 + h(λ + aP(t))N (t)

]
dt

)
,

P(t) � P(0) exp

(∫ t

0

[
ε(λ + aP(t))N (t)

1 + h(λ + aP(t))N (t)

P(t)

δ + P(t)
− m − m1P(t)

]
dt

)
.

Since the initial conditions are non-negative, we can conclude that the solution of (1) is always non-negative.
The boundedness means that the populations of prey and predators are limited within certain boundaries. Ecological systems

have finite resources, habitat capacities, and other constraints that impose limits on population growth. Boundedness ensures that
the populations do not grow indefinitely but instead remain within realistic limits dictated by factors such as food availability, space,
and interactions with other species. Using the first equation of (1), we see that

dN

dt
< r N

(
1 − N

k

)
,

=⇒ N (t) <
k

1 + kc0e−r t
.

Hence, we see that lim
t→∞ supN (t) < k which implies that the solution for prey density is bounded. Again to establish the boundedness

of predator density, we consider the function x(t) � N (t)+
P(t)

ε
and differentiating both sides with respect to t by using the equation

(1), we get

dx(t)

dt
+ κx(t) � (r + κ)N − r N 2

k
− m1P2

ε

<
k(r + κ)2

4r

=⇒ x(t) <
k(r + κ)2

4rκ
,

which implies that x(t) is bounded and so both populations are bounded. It is clear from the above results that none of the populations
grows infinitely.
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Fig. 2 Changing the number of equilibrium point(s) for different values of Allee effect(δ) and other parametric values are given in Table 2. Magenta and
black curves are prey and predator nullcline, respectively

3.2 Equilibria of system (1)

The equilibria of the system (1) are solution of the following equations:

r N

(
1 − N

k

)
− (λ + aP)N P

1 + h(λ + aP)N
� 0, (3)

ε(λ + aP)N P

1 + h(λ + aP)N

P

δ + P
− mP − m1P

2 � 0. (4)

We get the following three types of equilibrium points:

(1) The trivial equilibrium point E0 � (0, 0). This equilibrium always exists. In this state, neither prey nor predator populations
exist within the ecosystem.

(2) The predator-free axial equilibrium point E1 � (k, 0). This equilibrium is always present. In this state, only prey populations
exist within the ecosystem.

(3) The interior equilibrium point E∗(N∗, P∗), where N∗ � (P∗ + δ)(m + m1P∗)

(λ + aP∗)(εP∗ − h(P∗ + δ)(m + m1P∗))
and P∗ is the root of the

equation

AZ6 + BZ5 + CZ4 + DZ3 + EZ2 + FZ + G � 0, (5)

where the coefficients A, B, C , D, E , F , G are explicitly shown in Appendix A. This equilibrium holds ecological
significance as it allows both prey and predator populations to coexist and survive.

According to the above analysis, the given system has at most six interior equilibrium points. In this case, it will be difficult to
determine the number of interior equilibrium points analytically. We calculate equilibrium points numerically. For this purpose, we
have considered the hypothetical values of the system parameters are shown in Table 2. The nullclines of the prey and predator
populations of the model system (1) for different values of Allee effect δ are given in Fig. 2 and we see that maximum four interior
equilibrium points exist which are denoted by E∗

i (N∗, P∗)∗(i � 1 − 4).
Next, we examined how to change equilibrium points based on two parameters: λ − δ (see Fig. 3 (a)) and a − δ (see Fig. 3 (b),

respectively. It is clear from Fig. 3 (a) that at higher values of δ, there is no interior equilibrium point. In this situation, only prey
species can survive in the ecosystem. For moderate values of δ and any values of λ, two interior equilibria exist. Furthermore, for
lower values of δ and higher values of λ the deterministic system (1) has four equilibria. Fig. 3 (b), for higher values of δ system
does not have any interior equilibrium point. For moderate values of δ and higher values of a, the system has two interiors. For
higher values of a and lower values of δ, the system has four interiors.

123



  488 Page 6 of 23 Eur. Phys. J. Plus         (2024) 139:488 

Fig. 3 Changing the number of interior equilibria shown in (a) λ − δ and (b) a − δ plane. Red, green, and blue color regions represent no interior, two
interiors, and four interiors, respectively. All parameters are taken from Table 2 except m � 0.1

3.3 Stability of the equilibria

In this subsection, we shall discuss the stability of different types of equilibrium points. The Jacobian matrix JE (N , P) of the system
(1) at any point E(N , P) can be written as⎛
⎜⎜⎝
r

(
1 − 2N

k

)
− P(λ + aP)

(1 + Nh(λ + aP))2 − N (λ + 2Pa + Nh(λ + aP)2)

(1 + Nh(λ + aP))2

ε(λ + aP)P2

(1 + Nh(λ + aP))2(δ + P)

N Pε(2λ + 3aP)P2

(1 + Nh(λ + aP))(δ + P)
− N P2ε(λ + aP)(1 + Nh(λ + aδ + 2Pa))

(1 + Nh(λ + aP))2(δ + P)2 − m − 2m1P

⎞
⎟⎟⎠. (6)

Theorem 1 The trivial equilibrium point E0 is saddle and the axial equilibrium point E1 is always stable.

Proof The eigenvalues of the Jacobian matrix at E0 are r and −m. Since the eigenvalues are opposite in sign and so the trivial
equilibrium point E0 is always saddle. Also, the eigenvalues of E1 are −r and −m. Since both eigenvalues are negative and so the
axial equilibrium point is always stable. Hence the proof. �

Biologically, above two findings are important because the first result implies that both populations will not extinct simultaneously
but the second result implies predator extinction is probable. For the survival of both populations, there must exist bistability in this
biological system.

For the interior equilibrium point E∗(N∗, P∗) the Jacobian matrix can be expressed as JE∗ (N∗, P∗) �
(
a11 a12

a21 a22

)
, where a11,

a12, a21, a22 are given in Appendix B. The eigenvalues of the matrix JE∗ (N∗, P∗) are determined by the equation

λ2 − cλ + d � 0, (7)

where c � Trace(JE∗ (N∗, P∗)) � a11 +a22 and d � det(JE∗ (N∗, P∗)) � a11a22 −a21a12. The stability of the interior equilibrium
point E∗(N∗, P∗) depend on the following cases:

(1) If c < 0, d > 0 then E∗ is a stable equilibrium point and if c2 − 4d ≥ 0 then it is a stable node otherwise it is a stable spiral.
(2) If d < 0 then E∗ is saddle point.
(3) If c > 0, d > 0 then E∗ is an unstable equilibrium point and if c2 − 4d ≥ 0 then it is an unstable node otherwise it is an

unstable spiral.

Since it is quite challenging to determine the expression of the interior equilibrium point analytically, the above analysis cannot be
performed accurately. We use the geometric approach to study interior equilibrium points [46].

3.3.1 Geometric approach for stability criteria

In the above subsection, we discuss the theoretical conditions for the stability of the interior equilibrium points. In this subsection,
we demonstrate the geometrical approach for the stability of the interior equilibrium point. For the interior equilibrium point E∗(N∗,
P∗) the Jacobian matrix can be expressed as

JE∗ (N∗, P∗) �
⎛
⎜⎝N∗ ∂ f

∂N
N∗ ∂ f

∂P

P∗ ∂g

∂N
P∗ ∂g

∂P

⎞
⎟⎠.
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Fig. 4 Green and red curves are
prey and predator nullcline,
respectively. The figure shows the
geometric approach for the
stability of the interior equilibrium
point for δ � 2.3, a � 0.6.
Magenta and blue lines are the
axes and corresponding tangent
lines at E∗. Remaining other
parametric values are given in
Table 2

We consider the formula
dP ( f )

dN
� − fN

fP
and

dP (g)

dN
� −gN

gP
, then from above we get

JE∗ (N∗, P∗) �

⎛
⎜⎜⎜⎜⎜⎝

−N∗ ∂ f

∂P

dP ( f )

dN
N∗ ∂ f

∂P

P∗ ∂g

∂N
−

P∗ ∂g

∂N
dP (g)

dN

⎞
⎟⎟⎟⎟⎟⎠

.

Furthermore, we have seen that

∂ f

∂N
� − r

k
+
r2h

p∗

(
1 − N∗

k

)2

,
∂ f

∂P
� −

[
λ + 2aP∗ + hN∗(λ + aP∗)2

(1 + N∗h(λ + aP∗))2

]
< 0

∂g

∂N
� εPh(λ + aP)

h(δ + P)(1 + Nh(λ + aP))2 > 0,
∂g

∂P
� m + m1P∗

P∗(δ + P∗)
− aεP∗N∗

(1 + N∗h(λ + aP∗))2(δ + P∗)
− m1.

(1) From Fig. 4, it is clear that
dP ( f )

dN
< 0 (since the slope of the tangent line at E∗ is negative) and

dP (g)

dN
> 0. So the sign of

each element of the jacobian matrix at the interior equilibrium point is

(− −
+ −

)
. It is clear that the Det(JE∗ (N∗, P∗)) > 0 and

Trace(JE∗ (N∗, P∗)) < 0 so the interior equilibrium point is stable in nature. Using this approach, we can discuss two and
four interior equilibria, and the remaining equilibria can be discussed similarly.

(2) From Fig. 2(c), it is already discuss from previous part that sign(JE∗
1
(N∗, P∗)) �

(− −
+ −

)
and so E∗

1 is stable. Again for the

equilibrium E∗
2 , we see (Fig. 4) that along the predator nullcline the gradient of the tangent line is negative, i.e.,

dP (g)

dN
< 0.

So sign(JE∗
2
(N∗, P∗)) �

(− −
+ +

)
. Therefore, we cannot conclude that this interior equilibrium point is stable. But since one

of the interior equilibrium points is stable and so another cannot be stable.
(3) Also from Fig. 2(e), it is clear that there exist four interior equilibria. Using the same technique as above, we say that E∗

1 is stable.
We cannot conclude the stability using the geometric approach for E∗

2 and it will depend on the sign of determinant and trace
of the corresponding jacobian matrix. For the equilibrium point, E∗

3 we see both the curve is increasing in the neighborhood of

E∗
3 . So the sign of elements of the Jacobian matrix are

(
+ −
+ +

)
. This implies that E∗

3 must be unstable. Using the same reason

as for E∗
3 we say that E∗

4 is unstable.
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3.4 Bifurcation analysis

This subsection discusses different types of bifurcation analysis for different parameter values. Bifurcation means the change in the
qualitative behaviour of solutions with respect to the stable-instable nature or number of equilibrium point(s).

3.5 Study of creation and destroy of equilibrium points through saddle-node bifurcation

We rewrite the given system in the following form,

Ẋ �
(
f (N , P)
g(N , P)

)
� F(N , P), (8)

where X �
(
N
P

)
. Fixing other parameters if we consider r as the bifurcation parameter then it is possible to find a critical value

r � r [s] such that both roots of (5) will coincide. In this situation, one of the characteristic roots JE∗ (N∗, P∗) vanishes. To discuss
this bifurcation, we use Sotomayor theorem [47].

Theorem 2 The system (1) execute saddle node bifurcation at coincide interior equilibrium point E∗(N∗, P∗) at r � r [s] if a21(
a2

12 fN N − 2a12a11 fN P + a2
11 fP P

) 	� a11
(
a2

12gNN − 2a12a11gN P + a2
11gPP

)
.

Proof Let V1 and W1 be the eigenvectors corresponding to the eigenvalue 0 for the matrix JE∗ (N∗, P∗) and trans-

pose of it, then V1 �
(

a12

− a11

)
and W1 �

(
a21

− a11

)
. We have Fr (E∗(N∗, P∗)) �

⎛
⎝N∗

(
1 − N∗

k

)

0

⎞
⎠, which gives

WT
1 Fr (E∗(N∗, P∗)) � a21N∗

(
1 − N∗

k

)
	� 0. So WT

1 D2F(E∗(N∗, P∗))(V , V ) � a21
(
a2

12 fN N − 2a12a11 fN P + a2
11 fP P

) −a11(
a2

12gNN − 2a12a11gN P + a2
11gPP

) 	� 0. The explicit expression of ai j and different derivatives of f and g are given in Appendix B
and C. Hence we conclude from Sotomayor theorem [47] that the system undergoes to saddle-node bifurcation at interior equilibrium
point. �

3.6 Study of existence of periodic solution through Hopf bifurcation

Theorem 3 The system undergoes Hopf bifurcation at an interior equilibrium point E∗(N∗, P∗) at r � r [H ].

Proof We assume r [H ] in such a way that at r � r [H ], det(JE∗ (N∗, P∗)) > 0 and Trace(JE∗ (N∗, P∗)) � 0. Then we conclude

that the characteristic equation (7) has a purely imaginary root. Also, we see that the transversality condition
∂

∂r
(Trace(JE∗ (N∗,

P∗))) � 1 − 2N∗

k
	� 0 hold. Hence to find the Lyapunov number and stability of the limit cycle, we consider the following

transformation:

N � N̄ + N∗ and P � P̄ + P∗.

using the above transformation the system (1) changes as follows:

˙̄N � α10 N̄ + α01 P̄ + α20 N̄
2 + α11 N̄ P̄ + α02 P̄

2 + α30 N̄
3 + α21 N̄

2 P̄ + α12 N̄ P̄2 + α03 P̄
3 + ....... (9)

˙̄P � β10 N̄ + β01 P̄ + β20 N̄
2 + β11 N̄ P̄ + β02 P̄

2 + β30 N̄
3 + β21 N̄

2 P̄ + β12 N̄ P̄2 + β03 P̄
3 + ....... (10)

where, α10 � a11, α01 � a12, α20 � fN N , α11 � fN P , α02 � fP P , α30 � fN NN , α21 � fN N P , α12 � fN PP , α03 � fP PP and
β10 � a21, β01 � a22, β20 � gNN , β11 � gN P , β02 � gPP , β30 � gNNN , β21 � gNN P , β12 � gN PP , β03 � gPPP , The explicit
expression of the derivative of f and g and other coefficients are given in Appendix B and C and some of them are removed for their
large expression. At r � r [H ] the following conditions hold :

α10 + β01 � 0 and α10β01 − β10α01 > 0.

Let there exit a neighbourhood of r [H ] say (r [H ] − ε1, r [H ] + ε1), ε1 > 0 in which eigenvalues of the JE∗ (N∗, P∗) be complex

conjugate i.e., of the form a(r ) ± ib(r ) and we take the transformation ξ1 � N̄ , ξ2 � a(r ) − α10

α01
N̄ +

b(r )

α01
P̄ then the above system

(9) reforms as

ξ̇1 � a(r )ξ1 − b(r )ξ2 + φ1(ξ1, ξ2) (11)

ξ̇2 � b(r )ξ1 + a(r )ξ2 + φ2(ξ1, ξ2) (12)
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Table 2 Parameters value for the
deterministic model (1)

r k λ a h ε δ m m1

0.81 50 0.18 0.31 0.45 0.28 1.35 0.01 0.11

where, φ1(ξ1, ξ2) � k20ξ
2
1 + k11ξ1ξ2 + k02ξ

2
2 + k30ξ

3
1 + k21ξ

2
1 ξ2 + k12ξ1ξ

2
2 + k03ξ

3
2 ...... and φ2(ξ1, ξ2) � l20ξ

2
1 + l11ξ1ξ2 + l02ξ

2
2 +

l30ξ
3
1 + l21ξ

2
1 ξ2 + l12ξ1ξ

2
2 + l03ξ

3
2 ...... The expression of ki j and li j are given in Appendix D. Applying polar transformation [48–50]

the above system reforms as

ṙ � a(r )r + σ1(r )r3 + .......

θ̇ � b(r ) + σ2(r )r2 + .....

Let us apply Taylor’s expansion of the above normal form w.r.t r � r [H ] and we get,

ṙ � a
′
(r [H ])(r − r [H ])r + σ1(r [H ])r3 + .......

θ̇ � b(r [H ]) + (r − r [H ])b
′
(r [H ]) + σ2(r [H ])r2 + .....

In the above expression, the coefficient of r3 is the first Lyapunov constant (σ1) and its expression in simplified form is given bellow
[51]

σ1 � 1

16
[(φ1ξ1ξ1ξ1

+ φ1ξ1ξ2ξ2
+ gξ1ξ1ξ2 + φ2ξ2ξ2ξ2

) +
1

b(r [H ])
{φ1ξ1ξ2

(φ1ξ1ξ1
+ φ1ξ1ξ1

)−
φ2ξ1ξ2

(φ2ξ1ξ1
+ φ2ξ2ξ2

) − φ1ξ1ξ1
φ2ξ1ξ1

+ φ1ξ2ξ2
φ2ξ2ξ2

}](ξ1�0,ξ2�0,r�r [H ]).

(13)

The Hopf bifurcation theorem [52] states if σ1 > 0 then the system exhibit subcritical Hopf bifurcation and if σ1 < 0 then it exhibit
supercritical hopf bifurcation. �

4 Numerical simulation for deterministic model

In this part, we shall discuss the numerical results of the system (1) with the help of MAPLE, MATLAB software. To conduct numer-
ical simulations of the deterministic model (1), we utilized parameter values listed in Table 2, sourced from previous publications
[41, 53].

In Fig. 5, we have presented a one-parameter bifurcation diagram with respect to r , k, λ, and δ. It is clear from Figs. 5(a − c)
that with the increase the values of r , k, and λ the deterministic system (1) becomes unstable with stable limit cycle. Also the radius
of the limit cycle increase with increasing the values of parameters r , k, and λ. Also, another scenario observes for the parameter
δ. If we increase the parameter δ then the solution becomes stable (see Fig. 5 (d)). The radius of the stable limit cycle is decreasing
as increasing the parameter δ and it goes to zero for δ > 2.

For a better understanding of the complex dynamics of the deterministic model (1), we draw a one-parameter bifurcation diagram
(N− component solution curves for interior equilibrium point(s) with their nature) for different parameters and also drawn the
corresponding phase portrait depending the nature of the interior equilibrium point(s) (see Figs. 6-9). At first, we plot a one-
parameter bifurcation diagram (see Fig. 6) where k is the bifurcation parameter. It is clear from Fig. 6, for lower values of k, the
deterministic system has no interior, and increasing values of k, the system has two interiors, one stable and one saddle in nature,
i.e., the deterministic system experiences saddle-node bifurcation. Again increasing the values of k the stable interior becomes
unstable with a stable limit cycle and other equilibrium points have the same nature, i.e., the deterministic model (1) experiences
Hopf bifurcation. There are two more interiors in the system with increasing k values, one of which is stable other one is a saddle,
and the rest are the same, i.e., the system again experiences the saddle-node bifurcation. As k is increased, the system experiences
saddle-node bifurcation, such that there are only two interiors, saddle, and stable. The corresponding phase portrait is shown in
Fig. 6. It is clear from the above discussion that the deterministic model (1) exhibits complex dynamics with carrying capacity (k).

Next, we pick the parameter λ, and plot the bifurcation diagram of the deterministic model (1) (see Fig. 7). It is apparent from
the figure that up to a certain value of λ, the deterministic model (1) exhibits two interior equilibria. Out of which, one is always
saddle while another one is stable. On boosting up the value of λ, we see that the deterministic model (1) experiences a saddle-node
bifurcation, and there is a range of λ for which the model (1) exhibits four interior equilibria. These four interior equilibria are of
different features; two are saddle, one is unstable and one is stable. We observed that furthermore increment in the value of λ leads
to another saddle-node bifurcation in the system (1), and after the threshold value of λ, the system (1) again exhibits two interior
equilibria. The figure clearly shows that one of the two interior equilibria is saddle whereas the second one is unstable, here only
prey can survive in the system because none of the interiors are stable or stable limit cycles. In Fig. 7, we see that our model (1)
undergoes saddle-node bifurcation twice when λ is increased.
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Fig. 5 The bifurcation diagram of
the system (1) with respect to (a)
r, (b) k, (c) λ, (d) δ and rest of
parameters are taken from Table 2
except in (a), (c), (d), k � 5

Fig. 6 Solution curve for interior equilibrium point(s) with their nature and the corresponding phase portrait with respect to k. Blue and magenta color curves
represent stable spiral and stable node, respectively. The red and black color curves represent an unstable spiral and unstable node, respectively whereas the
green color curve represents a saddle in nature. The rest of the parameters are taken from Table 2

Next, in Fig. 8, we vary the parameter a to see the dynamics of the deterministic system (1). The figure shows that if a is below
a fixed value, then the deterministic system (1) exhibits two interior equilibria: one saddle and another stable. We observed that on
increasing the value of parameter a, the dynamics of the system (1) changes drastically. There is a threshold value of a at which the
system passes through a saddle-node bifurcation and for a range of a, it exhibits four interior equilibria. We find that two interior
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Fig. 7 Solution curve for interior equilibrium point(s) with nature and the corresponding phase portrait with respect to λ. Blue and magenta color curves
represent stable spiral and stable node, respectively. The red and black color curves represent an unstable spiral and unstable node, respectively whereas the
green color curve represents a saddle in nature. The rest of the parameters are taken from Table 2 except r � 0.71 and a � 0.2

Fig. 8 Solution curve for interior equilibrium point(s) with nature and the corresponding phase portrait with respect to a. Blue and magenta color curves
represent stable spiral and stable node, respectively. The red and black color curves represent an unstable spiral and unstable node, respectively whereas the
green color curve represents a saddle in nature. Rest of parameters are taken from Table 2 except δ � 0.65

equilibria are saddle, one is unstable while one is stable. Moreover, we observe another saddle-node bifurcation in the system if a
surpasses a critical value. System (1) is now found to exhibit two interior equilibria among them one is a saddle and another one is
an unstable spiral with a stable limit cycle. Thus, Fig. 8 depicts complex dynamics of the system (1) for the cooperation coefficient.

In Fig. 9, we plot the bifurcation diagram of the system (1) by varying the parameter δ. The figure shows that for lower values of δ,
the system (1) exhibits two interior equilibria; one of which is a saddle while the other is an unstable spiral with a stable limit cycle.
On increasing the value of δ, we find that system (1) exhibits four interior equilibria and there is a saddle-node bifurcation of the
equilibrium points. Of the four equilibrium points, one is stable, one is unstable and two are saddle. We again observe the appearance
of saddle-node bifurcation and the system (1) exhibits two interior equilibria after another threshold value of λ. Deterministic system
(1) experiences one more saddle-node bifurcation for λ, and after that critical value of λ, the system does not have any interior
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Fig. 9 Solution curve for interior equilibrium point(s) with nature and the corresponding phase portrait with respect to δ. Blue and magenta color curves
represent stable spiral and stable node, respectively. The red and black color curves represent an unstable spiral and unstable node, respectively whereas the
green color curve represents saddle in nature. Rest of parameters are taken from Table 2

Fig. 10 Basin of attraction of the interior and axial equilibrium point. Green curve represents sepatrix. All parameters are taken from Table 2 except a � 0.6
and in (a) k � 5 and in (b) and k � 8

equilibrium, in this scenario the prey species only survive in the system. It is clear from Fig. 9 and Fig. 5 (d) that for δ � 0, the
system is showing oscillatory behaviour with a limit cycle. But increasing δ towards moderate values the limit cycle disappears
through saddle-node bifurcation and a stable interior equilibrium point arises. For higher values of δ the predator population goes
to extinction (i.e., the interior equilibrium point disappears) through another saddle-node bifurcation.

We have to note that in Figs. 6-9 the system shows bi-stable nature when the interior equilibrium point is stable or stable limit
cycle arises around it. The bi-stability occurs because the axial equilibrium point is always stable (see Fig. 10). In these cases, the
coexistence of both species not only depends on parameter values but also on initial population density.

We now plot a bifurcation diagram when two parameters are changed simultaneously (see Fig. 11 (a) and (b)). It is clear from
Fig. 11 (a) and (b) that r has tendency to stabilized the system but λ and a are both destabilized the system.

5 Mathematical analysis of stochastic model

In this section, we discuss the stochastic model (2) of the prey-predator system (1). At first, we will show the existence and uniqueness
of the solution, stationary distribution, and then the extinction and persistence of the solution. The theoretical result is also validated
by numerical simulation.
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Fig. 11 This figure display the Hopf bifurcation curve in (a) r − a plane and in (b) r − λ. All parameters are taken from Table 2 except a � 0.2

Notations: Let us consider the stochastic differential equation in the following form

dX (t) � a(X )dt +
2∑

k�1

σk(X )dBk(t), X (0) � X0 (14)

where X(t) denotes a Markov process, Bk(t) represents standard Brownian motion of dimension 2. Then the diffusion matrix A(X)

of X(t) can be expressed as A(X ) � (ai j (X )), where (ai j (X )) �
2∑

k�1

σ i
k (X )σ j

k (X ).

5.1 Uniqueness and existence of global positive solution

For the uniqueness of a global positive solution of the stochastic differential equation, the involved function in the stochastic system
is needed to hold the linear growth condition and local Lipschitz condition [54–56]. Since the stochastic system (2) does not satisfy
the linear growth condition and so the solution of the system may explode at a finite time. So we consider the following theorem.

Theorem 4 The system (2) has a unique positive global solution (N(t), P(t)) for any initial values of (N (0), P(0)) ∈ R
2
+ for all

t ∈ [0, τe) almost surely (a.s) if m1 > a. Also, the solution remains in R2
+ with probability 1, where τe is the explosion time.

Proof Let us consider the following transformation x(t) � ln(N (t)), y(t) � ln(P(t)) and using the Ito’s formula [55] the system
(2) reforms as follows:

dx(t) �
[
r

(
1 − ex(t)

k

)
− (λ + aey(t))ey(t)

1 + h(λ + aey(t))ex(t) − σ 2
1

2

]
dt + σ1dB1(t),

dy(t) �
[

ε(λ + aey(t))ex(t)

1 + h(λ + aey(t))ex(t)

ey(t)

δ + ey(t) − m − m1e
y(t) − σ 2

2

2

]
dt + σ2dB2(t).

Here is the initial condition x(0) � ln(N (0)), y(0) � ln(P(0)) and it is clear that the corresponding stochastic function of the above
system satisfies the local Lipschitz condition. Then N (t) � ex(t) and P(t) � ey(t) are the local positive solution of system (2). In
the next step, we show that the solution is global and so we choose a non-negative integer k0 such that N(0), P(0) lies within the

interval

[
1

k0
, k0

]
. We define the stopping time τk for any integer k > k0 as follows:

τk � inf

{
t ∈ [0, τe) : N (t) /∈

(
1

k
, k

)
or P(t) /∈

(
1

k
, k

)}
.

It is clear that τk is increasing function for k → ∞. Let lim
k→∞ � τ∞ whence τ∞ ≤ τe. To show that the solution is global we have

to show τe � ∞ which is equivalent to showing τ∞ � ∞. We use the method of contradiction to prove it. Let us assume that the
statement is false and so there exists M > 0 and ε ∈ (0, 1) such that P(τ∞ ≤ M) > ε. So there exists a constant p1 > p0 for which
P(τp ≤ M) ≥ ε for all p ≥ p1. Let us define V (N , P) � N + 1 − ln N + P + 1 − ln P . Using Ito’s formula and we get

dV �(N − 1)

[
r

(
1 − N

k

)
− (λ + aP)P

1 + h(λ + aP)N
+

σ 2
1

2

]
dt + (P − 1)
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[
ε(λ + aP)N

1 + h(λ + aP)N

P

δ + P
− m − m1P +

σ 2
2

2

]
dt + σ1(N − 1)dB1(t) + σ2(P − 1)dB2(t)

≤
[
Nr (k + 1)

k
− (m1 − a)P2 +

(
λ − m + m1 +

ε

h

)
P + m

]
dt

+ σ1(N − 1)dB1(t) + σ2(P − 1)dB2(t)

≤
[
Nr (k + 1)

k
+

(
λ − m + m1 +

ε

h

)
P + m

]
dt

+ σ1(N − 1)dB1(t) + σ2(P − 1)dB2(t) [since m1 > a]

≤ 2

[(
r (k + 1)

k

)
(N + 1 − ln N ) + 2

(
λ + m1 +

ε

h

)
(P + 1 − ln P) + m

]

+ σ1(N − 1)dB1(t) + σ2(P − 1)dB2(t)

[using the inequality zi ≤ 2(zi + 1 − ln zi )].

Let C � max

{
2r (k + 1)

k
, 2

(
λ + m1 +

ε

h

)
, m

}
, then from above we get

dV ≤ C(V + 1)dt + σ1(N − 1)dB1(t) + σ2(P − 1)dB2(t).

So from integrating both sides from 0 to τk∧M with Ito’s integral formula [57] and taking exception by using Grownwall’s inequality
[55] we get,

EV (N (τk ∧ M), P(τk ∧ M)) ≤ V (N (0), P(0)) + CE
∫ τk∧M

0
(V + 1)dt

≤ V (N (0), P(0)) + CM + C
∫ τk∧M

0
EV (N , P)dt

≤ [V (N (0), P(0)) + CM]eCM

� M1.

Hence V (N (τk ∧M), P(τk ∧M)) ≥ (k−1− ln k)∧
(

1

k
− 1 − ln

1

k

)
. So it can be easily derived that M1 ≥ E[1�t (θ )V (N (τk ∧M),

P(τk ∧ M))] ≥ ε

[
(k − 1 − ln k) ∧

(
1

k
− 1 − ln

1

k

)]
, where 1�t is the indicator function of �t . Letting k → ∞, we get ∞ >

M1 � ∞ which is a contradiction. This completes the proof. �

5.2 Existence of stationary distribution

In this subsection, we show the existence of stationary distribution in (2). Here stationary distribution implies it is a stationary
Markov process. In this case, both the populations are persistent and extinction cannot occur. The existence of stationary distribution
gives the stability of the solution in a stochastic sense.

Lemma 1 Let g(.) be a functional integrable about the measure μ. If the following conditions hold:

(1) The smallest eigenvalue of the diffusion matrix bounded away from zero in the bounded domain U ⊂ El with regular boundary
and some neighborhood thereof.

(2) If x ∈ El\U, the mean time τ1 at which a path emerging from x reaches the set U is finite and supx∈V Exτ1 < ∞ for every
compact subset V ⊂ El .

Then the Markov process X(t) has a stationary distribution μ(.). Also

Px

{
lim

T→∞
1

T

∫ T

0
g(X (t))dt �

∫
El

g(x)μ(dx)

}
� 1.

Theorem 5 Let m1 >
ε

P∗ + δ
, β < min

{( r
k

)
N∗2,

(
m1 − ε

P∗ + δ

)(
P∗ − (1 + ε)(δ + P∗)

2h(m1P∗ − m1δ − ε)

)2
}
, where β �

(1 + ε)2(δ + P∗)

4h2(m1P∗ − m1δ − ε)
+

2(1 + ε)P∗

h
+

σ 2
1 N

∗

2
+

σ 2
2 P

∗

2
then the system (2) exists a stationary distribution and it is ergodic.
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Proof Let (N∗, P∗) be an interior equilibrium point of the system (1) and we define a function V (N , P) as follows:

V (N , P) � N − N∗ ln

(
N

N∗

)
+ P − P∗ ln

(
P

P∗

)

LV � (N − N∗)
N

N∗ +
σ 2

1 N
∗

2
+ (P − P∗)

P

P∗ +
σ 2

2 P
∗

2

� (N − N∗)

[
r

(
1 − N

k

)
− (λ + aP)P

1 + h(λ + aP)N

]

+ (P − P∗)

[
ε(λ + aP)N

1 + h(λ + aP)N

P

δ + P
− m − m1P

]

+
σ 2

1 N
∗

2
+

σ 2
2 P

∗

2

≤ − r

k
(N − N∗)2 − m1(P − P∗)2 +

ε(P − P∗)2

P∗ + δ
+

(1 + ε)(P + P∗)

h
+

σ 2
1 N

∗

2
+

σ 2
2 P

∗

2

� − r

k
(N − N∗)2 −

(
m1 − ε

P∗ + δ

)
(P − P∗)2 +

(1 + ε)(P + P∗)

h
+

σ 2
1 N

∗

2
+

σ 2
2 P

∗

2

� − r

k
(N − N∗)2 −

(
m1 − ε

P∗ + δ

)(
P − P∗ +

(1 + ε)(δ + P∗)

2h(m1P∗ − m1δ − ε)

)2

+
(1 + ε)2(δ + P∗)

4h2(m1P∗ − m1δ − ε)
+

2(1 + ε)P∗

h
+

σ 2
1 N

∗

2
+

σ 2
2 P

∗

2
.

If β < min

{( r
k

)
N∗2,

(
m1 − ε

P∗ + δ

)(
P∗ − (1 + ε)(δ + P∗)

2h(m1P∗ − m1δ − ε)

)2
}

, the ellipsoid
r

k
(N − N∗)2 −

(
m1 +

ε

P∗ + δ

)
(
P − P∗ +

(1 + ε)(δ + P∗)

2h(m1P∗ − m1δ − ε)

)2

� β lies within R
2
+. We choose U as a neighborhood of the ellipsoid such that (Ū ) ⊆ int(R2

+),

where (Ū ) is the closure of U. So LV < 0 for all (N , P) ∈ R
2
+\U . Also A1 � min{σ 2

1 N
2, σ 2

2 P
2, (N , P) ∈ Ū } > 0 such that

2∑
i , j�1

ai jζiζ j � σ 2
1 N

2ζ 2
1 + σ 2

2 P
2ζ 2

2 ≥ A1|ζ |2, for all (N , P) ∈ Ū , ζ ∈ R
2.

Hence applying the lemma1 we conclude that the system (2) has a stationary distribution μ(.). �

5.3 Stochastic persistence and extinction

In this subsection, we show that if the initial condition is positive and a certain condition holds then the solution trajectories start
from the first quadrant then it always remains in the interior of the first quadrant and the solution remains bounded in future time.
Also, there exist some conditions for which the population goes to extinction.

Definition 1 The population N(t) is called strongly persistence in mean if lim
T→∞ inf

1

T

∫ T

0
N (t)dt > 0.

Lemma 2 (1) Let μ, T be positive constant and λ ≥ 0 such that ln N (t) ≤ λt − μ

∫ t

0
N (s)ds +

n∑
i�1

σi Bi (t), where σi ’s are

constants (1 ≤ i ≤ n) for t ≥ T then lim
T→∞ sup

1

T

∫ T

0
N (t)dt ≤ λ

μ
.

(2) Let μ, T be positive constant and λ ≥ 0 such that ln N (t) ≥ λt − μ

∫ t

0
N (s)ds +

n∑
i�1

σi Bi (t), where σi ’s are constants

(1 ≤ i ≤ n) for t ≥ T then lim
T→∞ inf

1

T

∫ T

0
N (t)dt ≥ λ

μ
.

Theorem 6 The solution of the stochastic model (2) are strongly persistent in mean if r >
σ 2

1

2
+ (λ + ak̄)k̄ and[

ελk

rm(1 + h(λ + ak̄)k̄)

(
r − σ 2

1

2
− (λ + ak̄)k̄

)
>

ε

hm
+ 1 +

σ 2
2

2m

]
, where k̄ is an upper bound of {N , P}.
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Proof Let us define V1(N (t)) � ln(N (t)). Applying Ito’s formula we get

dV1 �
[
r

(
1 − N (t)

k

)
− (λ + aP(t))P(t)

1 + h(λ + aP(t))N (t)
− σ 2

1

2

]
dt + σ1dB1(t)

≥
(
r − σ 2

1

2
− (λ + ak̄)k̄

)
dt + σ1dB1(t) − r N

k
dt.

Integrating both sides from the limit 0 to t and we get,

ln(N (t) − ln(N (0))

t
≥

(
r − σ 2

1

2
− (λ + ak̄)k̄

)
+

σ1B1(t)

t
− r

kt

∫ t

0
N (s)ds.

Applying the lemma 2 we say lim
t→∞ inf

1

t

∫ t

0
N (t)dt ≥ k

r

(
r − σ 2

1

2
− (λ + ak̄)k̄

)
> 0.

Again we define V2(P(t)) � ln(P(t)) and using Ito’s formula we get,

dV2 �
[

ε(λ + aP)N

1 + h(λ + aP)N

P

δ + P
− m − m1P − σ 2

2

2

]
dt + σ2dB2(t)

≥
[

ελN

1 + h(λ + ak̄)k̄
− ε

h
− m − m1P − σ 2

2

2

]
dt + σ2dB2(t).

Integrating both sides between the limit 0 to t and using the previous inequality we get,

ln(P(t)) − ln(P(0)) ≥
[

ελk

r (1 + h(λ + ak̄)k̄)

(
r − σ 2

1

2
− (λ + ak̄)k̄

)
− ε

h
− m − σ 2

2

2

]
t

+ σ2B2(t) − m1

∫ t

0
P(s)ds.

Using the lemma 2 we conclude that lim
t→∞ inf

1

t

∫ t

0
P(t)dt ≥

[
ελk

rm(1 + h(λ + ak̄)k̄)

(
r − σ 2

1

2
− (λ + ak̄)k̄

)
− ε

hm
− 1 − σ 2

2

2m

]
> 0.

This complete the proof of the theorem. �

Theorem 7 If σ 2
1 > 2r and

(
ε

h
< m +

σ 2
2

2

)
then both the population goes to extinction.

Proof From the above Theorem (6) we see that

dV1 ≤
(
r − σ 2

1

2

)
dt + σ1dB1(t) − r N

k
dt.

Integrating both sides and using the lemma (2) we get, lim
t→∞ sup

1

t

∫ t

0
N (t)dt ≤ k

r

(
r − σ 2

1

2

)
< 0, which implies lim

t→∞ N (t) � 0.

Similarly, we get

dV2 ≤
(

ε

h
− m − m1P − σ 2

2

2

)
dt + σ2dB2(t).

So integrating and using the lemma (2) we get, lim
t→∞ sup

1

t

∫ t

0
P(t)dt ≤ 1

m1

(
ε

h
− m − σ 2

2

2

)
< 0, which gives lim

t→∞ P(t) � 0. This

completes the proof. �

5.4 Confidence ellipse about interior equilibrium point for stochastic model (2)

In this section, we derive the equation for confidence ellipse about some interior equilibrium point. Let us take the same intensities
of environmental fluctuation then the stochastic model (2) can be expressed as

dX (t) � a(X )dt + σM(X (t))dB(t), (15)
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Fig. 12 Time series solutions of systems (1) and (2) and corresponding phase portrait along with confidense ellipse (a-c). Relative frequency density of prey,
predator populations and scatter plot along with the confidence ellipse (d-f). We assume σ1 � σ2 � 0.02, k � 5, a � 0.6 and remaing parameters are given
in Table 2

where, a(X ) �
⎛
⎜⎝

r N

(
1 − N

k

)
− (λ + aP)N P

1 + h(λ + aP)N
ε(λ + aP)N P

1 + h(λ + aP)N

P

δ + P
− mP − m1P2

⎞
⎟⎠, M(X ) �

(
N 0
0 P

)
.

The quasi-potential function (V (X)) is defined by V (X ) � − lim
σ→0

σ 2 ln �(X , σ ) [58]. We consider the approximation of a

stable equilibrium solution for the system (15). Let X∗ � (N∗, P∗) be the stable equilibrium point and the asymptotic stationary
distribution can be represented in the Gaussian form as follows:

�(X , σ ) ≈ Ke

(
−V (X )

σ 2

)

≈ Ke

⎛
⎝− (X − X∗)T W−1(X − X∗)

2σ 2

⎞
⎠
. (16)

Here σ 2W is the n × n covariance matrix. The stationary distribution function �(x , σ ) control the oscillation of the solution of the
system (15). The element of the matrix W satisfies the following equations [59, 60]:

GW + WGT � −A(X ), G � ∂F

∂X
(X∗),

where, A is the diffusion matrix. If we assume that W �
(

w11 w12

w21 w22

)
and G �

(
h11 h12

h21 h22

)
then we get the following equations:

2h11w11 + h12w12 + h12w21 + N∗2 � 0,

h21w11 + (h11 + h22)w12 + h12w22 � 0,

h21w11 + (h11 + h22)w21 + h12w22 � 0,

h21w12 + h21w21 + 2h22w22 + P∗2 � 0.

Solving the above equation, we get the stochastic sensitivity matrix W . Therefore the equation of confidence ellipse can be written
as

(X − X∗)T W−1(X − X∗) � −2σ 2 ln(1 − p), (17)
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Fig. 13 We assume k � 5 and a � 0.6 and other parameters are given in Table-2. For the intensities of environmental fluctuation σ1 � 0.05, σ2 � 0.05 the
deterministic vs stochastic solution of (2) for Prey and Predator shown in (a− b) and corresponding phase portrait with confidence ellipse (cyan) is shown in
(c). Regime shift for prey (d) and predator (e) for the intensities σ1 � 0.1, σ2 � 0.1 and all the parameters are same as before. Corresponding phase portrait
with confidence ellipse is shown in (f )

where p is called fiducial probability.

6 Numerical simulation for stochastic model

Here, we shall verify the theoretical result for a stochastic model with the help of numerical simulation. We use Milstein’s higher-order
approximation method [61] then we obtain the following discretization system:

Ni+1 � Ni +

[
r Ni

(
1 − Ni

k

)
− (λ + aPi )Ni Pi

1 + h(λ + aPi )Ni

]
�t + σ1Niai

√
�t +

σ 2
1

2
Ni (a

2
i − 1)�t

Pi+1 � Pi +

[
ε(λ + aPi )Ni Pi

1 + h(λ + aPi )Ni

Pi
δ + Pi

− mPi − m1Pi
2
]
�t + σ2Pibi

√
�t +

σ 2
2

2
Pi (b

2
i − 1)�t.

Where �t > 0 and ai , bi are the independent Gaussian random variables N(0, 1) for i � 1, 2, 3, ....., n.
To start numerical simulation for the stochastic model (2), we consider the parametric values given in Table 2 except a � 0.6 and

k � 5. In this case, we see that there exists two interior equilibrium points where higher density equilibrium point is stable spiral
and another equilibrium point is saddle. From Figs. 12 (a) and 12 (b), we see that the deterministic solution is stable for both prey
and predator population. If we increase the environmental white noises σ1 � 0.02 and σ2 � 0.02 then the solution of the system
(2) fluctuate around the deterministic steady state values N∗ � 2.36089, P∗ � 1.00164. We have repeated the simulation 10000
times and taken all parameters fixed and observe no extinction scenario. It can be verified that no extinction will for the future time
for the chosen parameters and intensities. The corresponding phase portrait for both populations is shown in Fig. 12(c). Also, the
stationary distribution for both populations is shown in Fig. 12(d) and 12(e). From the stationary distribution, it is clear that the
population distributed normally about the mean values N∗ � 2.36089 and P∗ � 1.00164 respectively. The spread of the stationary
distribution is influenced by the strength of environmental fluctuations. A stochastic stable system can be visualized as a probability
cloud representing the stationary distribution. In Fig. 12(f ), we depict a scatter diagram for both populations, illustrating how the
probability cloud fluctuates around the deterministic stable equilibrium point (2.36089, 1.00164). The dispersion of this cloud is
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Fig. 14 Time series for deterministic vs stochastic solution for prey and predator (a − b) and the corresponding phase portrait shown in (c). The stationary
distribution for prey and predator is shown in d and e. The scatter plot is shown in f. We assume σ1 � 0.01, σ2 � 0.01, k � 8 and a � 0.6. and other
parameters are given in Table 2

Fig. 15 Time series for prey and predator in deterministic and stochastic solution (a − b) for σ1 � 0.1, σ2 � 0.1, a � 0.6, k � 8 and other parameters are
given in Table 2. The corresponding phase portrait is shown in (c)

determined by the intensities σ1 and σ2, reflecting the magnitude of environmental fluctuations affecting the prey and predator
populations.

Also, we plot the confidence ellipse about the interior equilibrium point E∗
1 (2.36080, 1.00164) using the following equation for

σ1 � σ2 � σ � 0.02 and fiducial probability p � 0.95

0.01034(x − 2.36080)2 + 0.07197(x − 2.36080)(y − 1.00164) + 0.29984(y − 1.00164)2

+ 2σ 2 ln(1 − p) � 0 (see Fig. 12(c)). (18)

If we increase the strength of fluctuation as σ1 � σ2 � 0.05 then the oscillation is highly fluctuate (Figs. 13(a-b)). Also, the
interesting fact is that the size of confidence ellipse increase from earlier (Fig. 13(c)). The stochastic solution started to shift from
one region to another when we increase the strength of fluctuation as σ1 � σ2 � 0.1. We see that the confidence ellipse crosses
the basin of attraction and so the prey population shifted from its stable point 2.36089 to 4.761985175 and similar way the predator
population shifted from stable equilibrium point 1.00164 to extinction (Figs 13(d-e)). The corresponding phase portrait is shown in
(Fig. 13(f)) and this is known as regime shift in the stochastic model (2).
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In the next step, we consider the parametric values from Table 2 except k � 8 and a � 0.6. Then we see from Figs. 14(a − b)
that the solution of the deterministic model is unstable with stable limit cycle. If we introduce environmental white noise σ1 � 0.01,
σ2 � 0.01 then we see that the periodic solution is oscillate about its deterministic solution. The corresponding phase portrait is
shown in Figs. 14(c) and from this we see that due to environmental fluctuation the solution oscillates around the stable limit cycle.
The stationary distribution is shown in Figs. 14(d − e) and it is clear that the prey population is distributed within (0.1, 5.9) and the
range for the predator population is (0, 6). In Fig. 14(f ) we see the probability cloud of stationary distribution up to t � 1000. It is
clear that the probability cloud is distributed about the limit cycle and it remains unchanged at future times.

If we increase the strength of fluctuation then the system changes its dynamic behaviour. To verify this we increase the strength
of white noise σ1 � σ2 � 0.1 and take all other parameters fixed then we see from Figs. 15(a − b) that the prey population shifted
from one region to other but never goes to extinction whereas the predator population goes to extinction.

7 Conclusion

In this paper, we have analyzed a prey-predator model with hunting cooperation and mate-finding Allee effect in both deterministic
and stochastic environments. The purpose of this study is to investigate hunting cooperation in the presence of the Allee effect. Here,
we have examined the equilibria and their local stability. Furthermore, we have determined that the deterministic system experiences
saddle-node and Hopf-bifurcations. By increasing the prey growth rate, carrying capacity, and attack rate of a predator, the system
becomes unstable from its stable nature. However, the Allee effect can stabilize the system. Moreover, we found that the system
exhibits complex dynamics with an increase in carrying capacity, predator attack rates, hunting cooperation, and Allee effect values
for another set of values.

Due to the importance of white noise to the population dynamics of ecological systems, we also investigated the behavior of a
stochastic system that corresponds to our proposed model. A global positive solution to the stochastic system can be determined
analytically under certain conditions. For low intensities of environmental noise, the solution trajectories of our stochastic system
fluctuate near those of the corresponding deterministic system. The amplitudes of fluctuations increase with gradual increases in
white noise intensities. We observed due to high fluctuations the regime shift occur and we use SSF technique to show the shifting
behavior. Depending on different intensities of environmental fluctuation the size of the confidence ellipse changes and the dynamical
behavior changes when it crosses the separatrix. Overall, we observed that the fluctuations in the equilibrium abundances of prey
and predator species in the ecosystem can be minimized by regulating the intensities of the environmental noises. According to
stochastic simulation results, at lower noise strength levels, population density will be subject to random fluctuations. It is important
to note that our stochastic system is prone to noise-induced transitions.

In this paper, we have examined both the deterministic and stochastic effects of our system. In our future direction, we aim
to incorporate delay into our model and explore its implications. Additionally, we plan to study the system within an imprecise
environment by introducing interval numbers. By integrating delay and imprecision into our analysis, we anticipate gaining a deeper
understanding of the dynamics of ecological systems and their responses to various factors. This extension will enable us to investigate
how delayed interactions and parameter uncertainties influence system behavior, offering valuable insights into ecological processes
and ecosystem stability.
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Appendices

Appendix A

A � ka2h2m2
1, B � 2kahm1(aδhm1 + ahm + hλm1 − aε),

C � k(a2δ2h2m2
1 + 4a2δh2mm1 + 4aδh2λm2

1 − 2a2δεhm1 + a2h2m2 + 4ah2λmm1 + h2λ2m2
1 − 2a2εhm − 4aεhλm1 + a2ε2),

D � k(2a2δ2h2mm1 + 2aδ2h2λm2
1 + 2a2δh2m2 + 8aδh2λmm1 + 2δh2λ2m2

1 − 2a2δεhm − 4aδεhλm1 + 2ah2λm2 + 2h2λ2mm1

− 4aεhλm + aεhm1r − 2εhλ2m1 + 2aε2λ),

E � ka2δ2h2m2 + 4kaδ2h2λmm1 + kδ2h2λ2m2
1 + 4kaδh2λm2 + 4kδh2λ2mm1 − 4kaδεhλm + kaδεhm1r − 2kδεhλ2m1 + kh2λ2m2
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+ kaεhmr − 2kεhλ2m + kεhλm1r − kaε2r + kε2λ2 + εm1r ,

F � 2kaδ2h2λm2 + 2kδ2h2λ2mm1 + 2kδh2λ2m2 + kaδεhmr − 2kδεhλ2m + kδεhλm1r + kεhλmr

− kε2λr + δεm1r + εmr , G � δm(kδh2λ2m + kεhλr + εr ).

Appendix B

a11 � N∗hr2

P∗

(
1 − N∗

k

)2

− r N∗

k
, a12 � −N∗(λ + 2P∗a + N∗h(λ + aP∗)2)

(1 + N∗h(λ + aP∗))2 ,

a21 � P∗(m + m1P∗)

N∗ , a22 � m − (m + m1P∗)2(λ + N∗h(λ + aP∗)2 − aP∗)

εN∗(λ + aP∗)2 .

Appendix C

fN N � −2r

k
+

2P∗h(λ + aP∗)2

(1 + N∗h(λ + aP∗))3 , fN P � −N∗hλ(λ + aP∗ + λ + 2aP∗)

(1 + N∗h(λ + aP∗))3 , fP P � − 2aN∗(1 + λhN∗)

(1 + N∗h(λ + aP∗))3 ,

gNN � − 2εP∗2h(λ + aP∗)2

(1 + N∗h(λ + aP∗))3(δ + P∗)
,

gN P � εp∗(N∗P∗2a2δh + N∗P∗2aλh + 3N∗P∗aδh + N∗P∗λ2h + 2N∗δhλ2 + 2P∗2a + 3P∗aδ + P∗λ + 2δλ)

(1 + N∗h(λ + aP∗))3(δ + P∗)2 ,

gPP � 1

(1 + N∗h(λ + aP∗))3(δ + P∗)2 (2εN∗(N∗2
δ2h2(λ + aP∗)3 + N∗P∗3a2δh + 3N∗P∗2a2δ2h + N∗P∗3aλh + 3N∗P∗2aδλh

+ 6N∗P∗aδ2hλ + 2N∗δ2hλ2 + a(δ + P∗)3 + δ2λ − δ3a)).

Appendix D

k20 � α20 +
a(r ) − α10

α01
α11 +

(
a(r ) − α10

α01

)2

α02,

k11 � b(r )

α01
α11 + 2

(
a(r ) − α10

α01

)
b(r )

α01
α02,

k02 �
(
b(r )

α01

)2

α02,

k30 �
(

α(r ) − α10

α01

)2

α12 +

(
a(r ) − α10

α01

)3

α03,

k21 � 2

(
a(r ) − α10

α01

)
b(r )

α01
α12 + 3

(
a(r ) − α10

α01

)2 b(r )

α01
α03,

k12 � 3

(
a(r ) − α10

α01

)(
b(r )

α01

)2

α03 +

(
b(r )

α01

)2

α12,

k03 �
(
b(r )

α01

)3

α03,

l20 � α01

b(r )

{(
a(r ) − α10

α01

)2

β02 +
a(r ) − α10

α01
β11 −

(
α20 +

a(r ) − α10

α01
α11 +

(
a(r ) − α10

α01

)2

α02

)
a(r ) − α10

α01

}
,

l11 � α01

b(r )

{
b(r )

α01
β11 + 2

(
a(r ) − α10

α01

)
b(r )

α01
β02 − a(r ) − α10

α01

(
b(r )

α01
α11 + 2

(
a(r ) − α10

α01

)
b(r )

α01
α02

)}
,

l02 � α01

b(r )

{(
b(r )

α01

)2

β02 − a(r ) − α10

α01

b(r )

α01
α02

}
, l03 � α01

b(r )

{(
b(r )

α01

)3

β03 − a(r ) − α10

α01

(
b(r )

α01

)3

α03

}
,

l30 � α01

b(r )

{(
a(r ) − α10

α01

)2

β12 +

(
a(r ) − α10

α01

)3

β03 −
((

a(r ) − α10

α01

)2

α12 +

(
a(r ) − α10

α01

)3

α03

)
a(r ) − α10

α01

}
,

l21 � α01

b(r )

{
2

(
a(r ) − α10

α01

)
b(r )

α01
β12 + 3

(
a(r ) − α10

α01

)2 b(r )

α01
β03 −

(
2

(
a(r ) − α10

α01

)
b(r )

α01
α12

+3

(
a(r ) − α10

α01

)2 b(r )

α01
α03

)
a(r ) − α10

α01

}
,
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l12 � α01

b(r )

{
3

(
a(r ) − α10

α01

)(
b(r )

α01

)2

β03 +

(
b(r )

α01

)2

β12 −
(

3

(
a(r ) − α10

α01

)(
b(r )

α01

)2

α03 +

(
b(r )

α01

)2

α12

)
a(r ) − α10

α01

}
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